Introduction to Quantum Transport

Introduces the Non-Equilibrium Green's Function (NEGF) method widely used to describe quantum effects in nanoscale devices, along with its applications to spintronic devices.

Hosted by edX
Provided by Purdue University
Taught by Supriyo Datta / Shuvro Chowdhury
Free
No fee required
Go To Course

Overview

This course introduces the Schrodinger equation, using the tight-binding method to discuss the concept of bandstructure and E(k) relations, followed by an introduction to the NEGF method with simple illustrative examples. Concept of spinors is introduced along with the application of the NEGF method to spintronic devices.

No prior background in quantum mechanics or statistical mechanics is assumed.

This course is a part of a Purdue initiative that aims to complement the expertise that students develop with the breadth at the edges needed to work effectively in today's multidisciplinary environment. These serious short courses require few prerequisites and provide a general framework that can be filled in with self-study when needed.

Students taking this course will be required to complete two (2) proctored exams using the edX online Proctortrack software.
Completed exams will be scanned and sent using Gradescope for grading by Professor Datta.

Introduction to Quantum Transport is one course in a growing suite of unique, 1-credit-hour short courses being developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters program in Nano-Science and Technology. For further information and other courses offered and planned, please see the Nano-Science and Technology page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.

Give us feedback